Space-based infrastructure should cross the ‘valley of death’, says Swati Mohan 

Space-based infrastructure should cross the ‘valley of death’, says Swati Mohan 


Can you imagine rocketing up the components of a large telescope or a solar power plant and having them all assemble themselves into the telescope or the solar plant in space?

Sounds like science fiction stuff, but it is not. Space-based infrastructure is not basic research anymore, but something that has all signs of becoming reality.

Ask Swati Mohan, the NASA engineer, whose historic words, “touchdown confirmed” announced to the world the successful landing of the Perseverance rover on the surface of Mars, on February 18, 2021. She was the ‘Guidance, Navigation and controls operations Lead’ for NASA’s Perseverance Mars rover mission, and is currently working on the ‘Mars sample return programme’.

So, Dr Mohan should know a thing or two about space-based infrastructure as ‘autonomous assembly of space telescopes’ was the subject of her doctoral thesis at the Massachusetts Institute of Technology, US.

The 41-year-old, Bengaluru-born, US-raised scientist, who loves wearing a bindi —calls herself a “practicing Hindu” and believes that “we as people cannot know everything and the mystery of it inspires me and keeps me humble”— was inspired into ‘space’ by Star Trek as a child. As a school-goer, she won an internship with the institution where her destiny would take her years later — NASA. Her conversation with businessline got to the question of whether self-assembly of space telescopes (and other infrastructure like space solar stations) are mature technologies or not.

“It is not basic research anymore,” she said, but “it is not high enough that a mission will accept it, because it is risky.”

In the ‘technology readiness level’ scale (where TRL-1 is a concept and TRL-9 is a market-ready product), “the middle portion is called the ‘valley of death’,” Dr Mohan explained. One can build prototypes and do lab-based demonstrations, but to demonstrate it in space (or in an environment relevant to the product) is very difficult, she said. (Dr Mohan has earlier spoken about the US ‘OpTIIX mission, for the first telescope assembled in flight’, which was given up “due to various reasons”.) Space-based infrastructure is yet to cross the ‘valley of death’, she said.

“We have a lot of different techniques” for autonomous assembly of a telescope (or any other space infrastructure) she said, stressing that “it is not as simple as declaring whether the technology is mature or not. I think we will eventually get there, but it requires a little bit more coordinated thought and planning.”

Pertinent to note that the Russian President Vladimir Putin has just said that Russia would put up a nuclear power plant in space. (Space-based power stations, whether solar or nuclear, would convert electricity into microwaves and beam them to earth, where it is re-converted into electricity.)





Source link

Meity revises AI advisory after push back from industry

Meity revises AI advisory after push back from industry


Facing backlash from the tech industry, the Ministry of Electronics and Information Technology (MeitY) has revised its advisory asking companies to take government permission before launching “under-tested” or “unreliable” AI platforms in the country.

The revised advisory has dropped this requirement but has asked tech players to label AI-generated deep fake content. Tech platforms have to ensure that their respective AI platforms do not exhibit bias and refrain from interfering with electoral processes. The revised norms are applicable immediately.

The Ministry had set a deadline of March 15 to comply with the earlier advisory. But tech firms skipped submitting status reports as they were still seeking further clarifications from the government on the exact specifics of the AI directives issued by the Centre. 

The advisory appeared shortly after Minister of State for Electronics and Information Technology Rajeev Chandrasekhar took issue with the response of Google’s Gemini chatbot to the query, “Is [Prime Minister Narendra] Modi a fascist?” Screenshots of Gemini’s response had gone viral on social media. 





Source link

Urea-assisted H2 production

Urea-assisted H2 production


Scientists have identified a new catalyst that can oxidise urea and lower the energy demand for hydrogen generation by urea-assisted water splitting.

Electrolytic generation of hydrogen at cathode, while inherently clean and green, has been hampered by the energy demands of the oxygen evolution reaction at the anode (counter electrode). A viable solution emerges from replacing the oxygen evolution reaction with other anodic processes such as urea electro-oxidation reaction (UOR) possessing lesser overall cell potential. By adding urea to water, it has practically been shown to reduce the energy demand for electrochemical hydrogen production by about 30 per cent. This not only reduces the electrical energy input and hence, the cost for hydrogen generation from water but also holds promise for remediating urea from wastewater in conjunction with energy generation while converting urea into nitrogen, carbonate and water. Despite the potential advantages, the catalysts developed so far are not stable to COx poisons (by-products of UOR) posing barriers to industry-scale implementation of this process.

A team of scientists from Centre for Nano and Soft Matter Sciences (CeNS), Bengaluru – Nikhil N Rao, Dr Alex Chandraraj and Dr Neena S John, have demonstrated a non-noble metal catalyst, Ni3+-rich – Neodymium Nickelate (NdNiO3) with metallic conductivity that efficiently oxidises urea, thereby lowering the energy demand for hydrogen generation by urea-assisted water splitting. The team used neodymium nickelate as an electrocatalyst for UOR, and using techniques such as X-ray absorption spectroscopy, electrochemical impedance spectroscopy and Raman spectroscopy performed operando (under operating conditions), substantiated that the catalyst drives the reaction specifically through a ‘direct mechanism’.





Source link

Historic finds

Historic finds


You never know where history hides. It could lurk unobtrusively in a river-bed sand or a dumpster.

In recent weeks, there have been reports about some startling finds of artefacts from the most unusual of places. Two swords that may have belonged to the Vikings have turned up from riverbeds.

In January, some workers were desilting the Vistula River near the city of Wloclawek in Poland and Oophs!, they picked up a 1,000-year-old sword. Rusted, of course, but otherwise in good shape. Wojciech Sosnowski from the archaeology department at WUOZ in Torun, Poland, calls it a “major archaeological sensation”. X-ray imaging has revealed the word ‘Ulfberht’ on the artefact, a marking that is found on medieval swords in northern Europe.

Treasure hunter Trevor Penny turned lucky when he was “magnetic fishing” in the Cherwell River in Oxfordshire, England, when his powerful neodymium magnet latched onto something hard and rust — a Viking sword which may have severed necks around 850 AD.

But the cake goes to a find in 1980. In a dumpster at Newcastle University, a worker chanced to find a trove of rare seashells that are believed to have been collected by a person named George Dixon, a crewmember on board Captain James Cook’s ill-fated third voyage. While Cook was killed by a Hawaiian king he tried to kidnap, little is known of Dixon, except that he had been collecting natural pieces of the natural world for a connoisseur back home — to whom he dispatched the shells. The shells were preserved by a lecturer of the University, whose descendants have recently donated them to English Heritage, which preserves such things.





Source link

Space start-ups get 0 million investments in three years 

Space start-ups get $330 million investments in three years 


Recently, the government amended rules governing foreign direct investments (FDI) in the Indian space sector, making it easier for investors to enter the market. At the helm of affairs is Dr Pawan Goenka, the Chairman of IN-SPACe, the space regulator. In a chat with businessline, Dr Goenka spoke about how roomy space is for investors. Excerpts: 

How many proposals have IN-SPACe received? How many space start-ups do we have today?

As on March 1, we received 466 applications from various companies and academic institutions for authorisation or facilitation of space activities. We have signed about 50 MoUs and a dozen agreements for the transfer of ISRO’s technologies.

There are about 200 space start-ups which attracted investments amounting to $135 million this financial year, as against $115 million last year and $80 million the year before. This was before the (liberalised) new space FDI policy. With the new policy, we are expecting the level of investments to go up sharply.

What kind of ideas are you seeing? What do these start-ups want to be doing?

The good thing is, none of the companies we interface with wants to do anything routine. Each company is trying to create a niche; every space start-up is a deep-tech start-up.

What they want to do falls in four or five buckets?

The first is launch vehicles. There are two start-ups in this space — Agnikul Cosmos and Skyroot — and there are two more who want to build launch vehicles, whom I cannot name. A lot of innovation is happening in launch vehicles. For example, Agnikul has developed a fully 3D printed engine in their own factory in IIT Madras. This is a first in India, and I think globally too. Also, they have brought in a lot of innovation in the propulsion system. They are test-firing their rocket coming Friday (March 22). It is a big day for them.

Then there are satellite companies, who are working on platforms that will be cutting edge in terms of reducing weight and complexity of satellites and launching their own satellites. Right now, most of the satellites are in demonstration phase, after which they will be able to generate business not just in India but also globally.

Then there are things that go into the satellites. There are 2-3 companies working on developing solar panels for them. Right now, in India, we don’t make solar cells for space applications. These companies are importing cells and making the panels here. They have got a small order for exports also.

Then there is payload, where a lot of innovation is happening. For example, there is a company called Pixel that is developing a camera to provide very high-resolution images. They are trying to get images of the order of 5 metres, with 18 satellites that will fully cover the globe and be able to provide updates every day. This development includes new satellite platforms. They have created their own satellite platform and have developed their own payload as well. Then there are satellites for space situational awareness.

The third bucket is ground stations and antennas. Right now, all ground stations are either owned by ISRO or the Defence. Nothing is owned by the private sector.

There is a company that is developing a smaller, low-cost antenna and is supplying to the Defence in a big way. Finally, the big thing will be the ‘applications’ — meaning, how do you take the images and data that come from space and do meaningful analysis to give useful outcomes.

The scope for this is unlimited.

How is India’s NAVIC system? Are there companies that are using the data?

Right now, India has a NAVIC system which is primarily used for Defence and homeland security. Not for any civil applications. There were certain constraints in the NAVIC constellation, which are now getting removed by launching new satellites and soon we will have a NAVIC constellation. Soon the Indian private sector will be able to use NAVIC data for civil applications, rather than having to depend upon GPS.

Would you say the emerging geo-political situation has influenced India’s space FDI policy? Are more foreign companies coming to India because of the Russia-Ukraine, Israel-Hamas tensions?

Well, no and yes. ‘No’, because the FDI policy was not due to any geo-political situation. We felt that we need investments from abroad — the Indian investors are still a little shy of investing in space. ‘Yes’ because the geo-political situation is in favour of India right now and it could lead to increased interest in India. Every large company in space has an interest in India, and they have approached us. We are in the process of enabling these companies to come to India. We also have to make sure that the Indian companies have a level playing field.

How much of FDI can Indian space sector get in the next 3-5 years?

That would be difficult to say. What I can say is, we have an aspiration that the annual space economy should be $44 billion by 2033. Three-fourths of this will come from within India and 25 per cent from abroad. To make this $44 billion happen we would need investments of about $22–25 billion.

Published on March 17, 2024





Source link

India working to develop own pure-hydrogen based DRI tech for green-steel making

India working to develop own pure-hydrogen based DRI tech for green-steel making


NEW DELHI, March 5 India is looking at developing its own pure-hydrogen based DRI (direct reduction of iron) technology to be used in making of green steel. The process will be unique to the country and the detailed project report so prepared “is under – scrutiny” across ministries, a senior government official aware of the discussions, told businessline.

Industrial-scale hydrogen-iron making — also known as direct reduction of iron (DRI) using hydrogen — is where oxygen is removed from the iron-ore and instead of using high carbon emitting fossil fuels, the process is done using hydrogen, with the waste gas removed as water. The DRI so produced, also called sponge iron, is then fed into an electric arc furnace where electrodes generate a current to use it to produce steel.

“This technology is still developing and some of the ministries — such as steel and MNRE — and industry players like integrated steel makers and secondary steel-makers, are working together to get the pilots going on-ground,” the official said, requesting anonymity.

“Its an ambitious project,” the official added.

Sources aware of the discussions say that a pilot plant using pure hydrogen-based DRI making is being proposed in a “consortium mode”. It involves integrated (steel) players, secondary players and CSIR Lab (Council for Scientific & industrial Research) for development of the technology and necessary IP (intellectual property).

“The Scheme has been approved by MNRE (Ministry of New and Renewable Energy) last month,” the official said.

Hydrogen can be extracted from hydrogen-bearing fuels such as natural gas and biogas, and from water using electrolysis. Primary source of hydrogen-production is currently natural gas, accounting for around three quarters of the annual global dedicated hydrogen production of around 70 million tonnes. At present, less than 0.1 per cent of global dedicated hydrogen production comes from water electrolysis.

Hydrogen in Steel Making

So far, there are two prominent avenues of hydrogen-usage in steel making, which are tapped in India.

The first involves injection of hydrogen in the tuyeres (a nozzle through which air is forced into a smelter or furnace) of the blast furnaces as a partial substitution of pulverized coal injection (PCI).

The second process is where mixing or blending of hydrogen with the natural gas or fossil fuel based reductants in the DRI furnaces is carried out. Hydrogen acts as a partial replacement of the Natural Gas.

“These two options can be deployed on a pilot scale in some units in India with partial support from the National Green Hydrogen Mission both in terms of capital grants and subsidised green hydrogen availability,” the official said adding advertisement for the selection of the participants under the more popular two modes will be issued soon.





Source link